FICHE METHODE CALCUL LITTERAL

1. DEVELOPPER

On recherche des expressions ou partie d'expressions qui ressemblent à :

$$\begin{array}{c} k(a+b) \\ k(a-b) \end{array} \end{array}$$
 Simple distributivité
$$+ (....) \\ - (.....) \\ (a+b)(c+d) \end{array}$$
 Suppression de parenthèses précédées de + et non suivies de \times
$$(a+b)(c+d) \hspace{0.5cm} \text{Double distributivité}$$

$$\begin{array}{c} (a+b)^2 \\ (a-b)^2 \end{array}$$
 Identités remarquables

A RETENIR:

(a + b)(a - b)

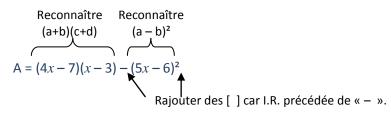
Simple distributivité: k(a+b) = ka + kb et k(a-b) = ka - kb

Double distributivité :
$$(a + b)(c + d) = ac + ad + bc + bd$$

Chaque flèche signifie " × ". Pour chaque flèche, s'interroger, dans l'ordre, sur le signe, puis le nombre et enfin la(les) lettre(s).

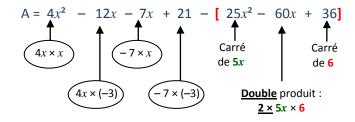
Faire attention aux signes :
$$(+...) \times (+...) \times$$

Suppression de parenthèses précédées de + et non suivies de × : + (.....) On supprime les parenthèses, elles sont inutiles.


Suppression de parenthèses précédées de – et non suivies de × : – (.....)
On supprime les parenthèses ET ON DISTRIBUE LE SIGNE – A TOUS LES TERMES ENTRE LES PARENTHESES, c'est-à-dire, on change tous les signes.

Identités remarquables :
$$(a + b)^2 = a^2 + 2ab + b^2$$

 $(a - b)^2 = a^2 - 2ab + b^2$
 $(a + b)(a - b) = a^2 - b^2$


Attention!

Pour la double distributivité ou les identités remarquables PRECEDEES D'UN SIGNE —, on rajoute des [], on développe à l'intérieur des [] puis on supprime les [] précédés de — en faisant attention aux signes.

Exemple : développer A = $(4x - 7)(x - 3) - (5x - 6)^2$

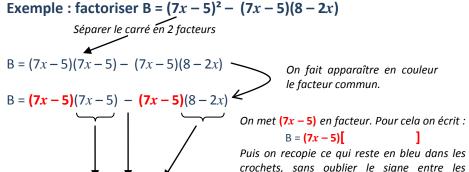
$$A = (4x - 7)(x - 3) - [(5x - 6)^{2}]$$

$$A = 4x^{2} - 12x - 7x + 21 - 25x^{2} + 60x - 36$$
Inchangé
Distribuer le signe – à tous les termes à l'intérieur des [].

$$A = \underbrace{4x^2 - 25x^2}_{A = -21x^2} - \underbrace{12x - 7x + 60x}_{+ 21x^2} + \underbrace{21 - 36}_{- 15}$$

Regrouper les termes de même nature pour réduire.

2. FACTORISER


On cherche d'abord un **facteur commun** pour utiliser

$$ka + kb = k(a + b)$$
 ou $ka - kb = k(a - b)$

S'il n'y a pas de facteur commun, on utilise les **identités remarquables**. On cherche une expression de la forme

$$a^2 + 2ab + b^2$$
 ou $a^2 - 2ab + b^2$ ou $a^2 - b^2$.

a. Factoriser avec un facteur commun: ka + kb = k(a + b)

crochets, sans oublier le signe entre les parenthèses.

On ne modifie pas ce qui est en rouge. On « arrange » l'expression bleue en supprimant les parenthèses et en réduisant. Attention au signe – !

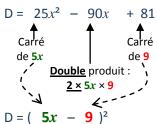
B =
$$(7x - 5)(7x - 5 - 8 + 2x)$$

B = $(7x - 5)(9x - 13)$

B = (7x - 5)[(7x - 5) - (8 - 2x)]

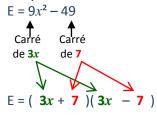
Remarque : Si cette expression a été développée auparavant, on peut vérifier ses réponses en redéveloppant l'expression ci-dessus.

b. Factoriser avec une identité remarquable


Factoriser avec $a^2 + 2ab + b^2 = (a + b)^2$ ou $a^2 - 2ab + b^2 = (a - b)^2$ Exemples:

$$C = x^{2} + 10x + 25$$
Carré
$$de x$$

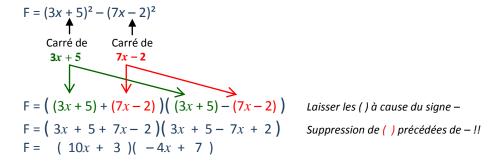
$$de 5$$


$$2 \times x \times 5$$

$$C = (x + 5)^{2}$$

Factoriser avec $a^2 - b^2 = (a + b)(a - b)$

Exemples:


F =
$$(2x-3)^2 - 16$$

Carré de Carré

(2x-3) de 4

F= $(2x-3+4)(2x-3-4)$

F= $(2x+1)(2x-7)$ (On réduit.)

3. CALCULER UNE EXPRESSION POUR UNE VALEUR PARTICULIERE DE $\it x$

Penser à rétablir tous les signes \times sous-entendus avant de remplacer x par la valeur donnée. Si cette valeur est négative, la mettre entre parenthèses.

Exemples:

Calculer G =
$$(5x - 4)(1 - 3x)$$
 pour $x = 2$

$$G = (5 \times x - 4) \times (1 - 3 \times x)$$

$$G = (5 \times 2 - 4) \times (1 - 3 \times 2)$$

$$G = (10 - 4) \times (1 - 6)$$

$$G = 6 \times (-5)$$

 $G = -30$

On remplace x par 2.
On calcule en respectant les priorités :

On rétablit les signes × sous-entendus.

- 1. Calcul entre parenthèses
- 2. Puissances
- Multiplications et divisions
- 4. Additions et soustractions.

Calculer H =
$$5x^2 - 8x + 1$$
 pour $x = -3$

H =
$$5 \times x^2 - 8 \times x + 1$$

H = $5 \times (-3)^2 - 8 \times (-3) + 1$

$$H = 5 \times 9 - 8 \times (-3) + 1$$

 $H = 45 + 24 + 1$

$$H = 70$$

On rétablit les signes × sous-entendus.

On remplace x par (-3)

On calcule en respectant les priorités :

- 1. Calcul entre parenthèses
- 2. Puissances
- Multiplications et divisions
- 4. Additions et soustractions.